Subbases, Convex Sets, and Hyperspaces

نویسندگان

  • JAN VAN MILL
  • MARCEL VAN DE VEL
چکیده

S[ and Sg are then said to separate (or: to screen) S± and S2. Finally, Sf is called a binary subbase if each linked system S^ (zS^ (i.e., a subcollection S^' of ^ of which any two members meet) satisfies ς\Sf'φ 0. It is well-known that a binary subbase is TΊ (cf. van Mill [9, Lemma 1]), that a space carrying a binary subbase is compact (use Alexander's lemma), and that a space is completely regular iff it admits a normal Tλ (sub)base (cf. Frink [6, Thm. 1]; de Groot and Aarts [1, Thm. 2]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline interpolation between hyperspaces of convex or fuzzy sets

We consider the interpolation problem for functions whose range and whose domain both consist of convex or fuzzy subsets of a real Euclidean space. This problem arises in fuzzy controlling, namely when the functional dependence between two fuzzy vectors is known only for finitely many cases. To have a criterion for an appropriate choice of an interpolation function, we generalise the well-known...

متن کامل

BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES

Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with  $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Convex Hilbert Cubes in Superextensions

The superextension A(Z) of a normal space Z is the set of all maximal linked families of closed subsets of Z, equipped with a Waliman-type topology. This construction was first devised by De Groot [4] as a part of his program to characterize complete regularity in terms of closed subbases. Since then, superextensions have been studied from other viewpoints by a variety of authors, and several a...

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004